Interfering gravitational waves

Helena Ubach – Universitat de Barcelona, ICCUB M helenaubach@icc.ub.edu work with Oleg Bulashenko, Ruxandra Bondarescu, Andrew Lundgren

Wave effects on gravitational waves have a universal signature. Low mass lenses are potentially detectable.

When are wave effects important?

Gravitational wavefronts are deflected as they pass through a potential. Most lensing contribution comes from around the stationary points of the time delay function

$$au = rac{1}{2} |ec{x} - ec{y}|^2 - \psi$$
 ,

corresponding to the position of the Geometrical Optics (GO) images.

However, for low f, M_L or y, the images are still not completely defined:

- Diffraction appears
- Interference oscillations appear due to interference of the emerging images

Fig. 1: Interference in the point mass lens model. The phase at the lens plane has two stationary points [1].

What do interference oscillations tell us?

Boundary between Diffraction/Amplification GO oscillations:

Fig. 2: Interference pattern: transmission factor F for different values of y [1]

$$F = -i \nu \iint e^{2\pi i \nu \tau(\mathbf{x}, \mathbf{y})} d^2 \mathbf{x}$$

Lensing of gravitational waves from compact binaries:

$$rac{M_L}{M_S} \sim rac{1}{u}^*$$

What do wave effects look like?

Wave effects are seen as oscillations due to interference:

Fig. 3: Spectrogram of a microlensed gravitational wave. Both the oscillations and the images (1,2) appear [2]. y=0.25 , $M_L=3000\,M_\odot$

M_L and y can be extracted from the oscillations [1,2]:

Fig. 4: Gravitational waveform for the microlensing of LIGO-Virgo-KAGRA compact binary mergers [2].

Are wave effects detectable?

Diffraction/Amplification: harder to distinguish

Potentially detectable

GO oscillations:

M_L mass of the lens gravitational wave frequency $\propto 1/\lambda$ wavelength

$$y$$
 wavelength source position

$$R_S = rac{2GM_L}{c^2}$$
 Schwarzschild radius of the lens M_S mass of the source $\propto 1/f$

$$heta_{
m E}$$
 Einstein angle

$$heta_{
m S} = y\, heta_{
m E}$$
 angular source position

References

[1] Bulashenko & Ubach JCAP (2022) arXiv:2112.10773

What would we see if there was an

→ unresolved/ too faint electromagnetic images

 $M_L \sim 10^2 - 10^5 M_\odot$ to have wave effects in LIGO-Virgo-KAGRA gravitational waves

Microlensing of light: $\theta_E \sim (0.03-1) \, {
m mas} \, \sqrt{\frac{d_S}{d_L d_{LS}}} {
m Gpc}$

electromagnetic counterpart?

[2] Bondarescu, Ubach, Bulashenko, Lundgren PRD (2023) arXiv:2211.13604

Fig. 5: White contours: match between the lensed and the unlensed waveforms. Color density: increase in Signal-to-Noise Ratio (SNR) [2]