Self-lensing signatures to constrain the environment of binary mergers

Helena Ubach, Mark Gieles, Jordi Miralda-Escudé helenaubach@icc.ub.edu

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

arXiv:2505.04794

From which astrophysical environments can gravitational waves come? [I]

Gravitational waves (GWs) are produced in mergers of compact binary objects, such as black holes (BHs). Stellar-mass BH binaries can be formed in dense environments. However, the origin of observed gravitational-wave events remains elusive. Can we use gravitational lensing by an object in the same environment (self-lensing) to distinguish the origin of a GW signal?

Detectability of self-lensing on gravitational wave events [III]

Even when gravitational lensing is imprinted on a signal [IV], the effect needs to be significant enough to be detectable.

(a) Distorted waveform (diffraction, interference)

For a single distorted signal, we quantify the mismatch between a lensed and an unlensed template and the detectability given a signal-to-noise ratio (SNR).

Black (left) and colored (right) contours delimit the threshold for detectability.

(b) Separate images (strong lensing)

For separate images, which will appear as separate signals, both need to be above the noise.

$$\left(\frac{\mu_{+}}{\mu_{-}}\right) = \left(\frac{\mathrm{SNR}_{\mathrm{lensed}}^{+}}{\mathrm{SNR}_{\mathrm{lensed}}^{-}}\right)^{2}
ightarrow y_{\mathrm{max}}$$

For LVK,
$$(SNR_L^+)^{max} = 50$$
, $y_{max} \simeq 2$.
For ET, $(SNR_L^+)^{max} = 1000$, $y_{max} \simeq 10$.

Probability of self-lensing [II]

To determine how often is self-lensing expected to be seen in detections, we quantify the probability in the different astrophysical environments labelled in Fig.1.

Probability \simeq optical depth au

 10^{-9}

 10^{5}

 $m_{
m c}({
m M}_{\odot})$

Central black hole mass

The detectability of the lensing effect is quantified by $y_{
m max}$, the maximum displacement of the source position with respect to perfect alignment, which we will determine in [III].

 $10^6 \quad 10^7 \quad 10^8 \quad 10^9$

 $y_{\text{max}} = 1$

Summary of the characteristic signatures

Detectable imprint

 10^{5}

 10^{6}

Fig.5. Summary of the characteristic signatures we may see in a GW signal, including lensing imprints, eccentricity in the waveform and a preferential polarization. As we can see, every scenario has different combinations, which potentially enables us to distinguish some of them.

- Lensing optical depth Velocity dispersion of the environment Distance between the lens and the source Position of the source with respect to the lens $m_{\rm L}$, $m_{
 m S}$ Mass of the lens and the source (total mass) Strain of the gravitational wave signal μ_+ , μ_- Lensing magnification of images 1 and 2 Bayes factor between lensed and unlensed hypotheses Speed of light in vacuum **Gravitational constant**

Diffraction (a) $m_{\rm L} = 100 \, {\rm M}_{\odot}$ Interference (b) $m_{\rm L} = 3000 \,{\rm M}_{\odot}$ (c) $m_{ m L} = 10^5 \, { m M}_{\odot}$ Strong lensing -2L -1.5 -0.5-1.01.5 2.0 0.0 0.5 1.0 t(s)Detectable imprint **Fig.6.** Strain (waveform) of the lensed gravitational wave signal as a function of time. The

 10^{2}

lensing imprint is different for different lens masses $m_{\rm L}$. Here we take a fixed y=0.25 .

10

 10^{3}

 $m_{
m L}(M_{\odot})$

 10^{4}

Combination with characteristic signatures

h_+ polarization in AGN disk:

due to the alignment of the binary orbital plane with the AGN disk, and the limitation of observing self-lensing only in edge-on disks

Eccentric signals:

- AGN disks: high eccentricity is expected
- Star clusters:
- Most gravitational-wave captures are eccentric, while only a
- fraction of ZLK mergers are eccentric (detectable lensing cases) Resonant interactions are expected to be eccentric (undetectable)
- lensing case)

Conclusions

- Self-lensing by a stellar-mass BH is both unlikely and mostly **undetectable** (diffraction)
- AGN disk self-lensing has the highest probability ($au \simeq 2 imes 10^{-2}$) + detectable lensing imprint
- + characteristic feature: h_+ polarization
- → could be distinguished from galaxy lensing and star cluster self-lensing
- Combining self-lensing with polarization and eccentricity can help us constrain the astrophysical environment of an individual GW event.